

Rev A1.0

Description

High-power broadband surface-mounted and embedded coupler series, realizing the power synthesis and distribution of microwave high-power amplifier system, signal acquisition and other functions. Used in active phased array radar, microwave transceiver components, microwave amplifiers, radio stations, satellite communications and other projects, to provide standardized and customized high-guality and reliable products.

The performance and reliability indexes are in line with international products, and the pin definition and package size are compatible with international products, realizing 100% in-situ replacement.

Features:	Electrical Specifications			
• 800-2500 MHz	Frequency	Isolation	Insertion Loss	VSWR
High PowerVery Low Loss	MHz	dB Min	dB Max	Max : 1
Tight Amplitude Balance	800 - 2500	17	0.40	1.30
 High Isolation Low VSWR 				
Good RepeatabilityRoHS Compliant	Amplitude Balance	Phase Balance	Power	Operating Temp.
 Tape & Reel Package available 	dB Max	Degrees	Avg. CW Watts	°C
	± 0.50	90 ± 5.0	400	-55 to +85

Notes:

1. All the above data are based on specified demo board.

2. Insertion loss: Thru board loss has been removed.

Mechanical Outline

Yantel Corporation

Add: No.308-322, 3F, Building 1, Juchuang Jingu Innovation Park, Wenyuan Road 35, Xili Street, Nanshan, Shenzhen, China Tel: 86-755-8355-1886 Fax: 86-755-8355-2533

For detailed performance specs & shopping online see Yantel web site : www.yantel-corp.com

Rev A1.0

Hybrid Coupler Pin Configuration

	PORT CONFIGURATION					
INPUT	1	2	3	4		
1		ISOLATION	-3dB<0 DEG	-3dB<-90 DEG		
2	ISOLATION		-3dB<-90 DEG	-3dB<0 DEG		
3	-3dB<0 DEG	-3dB<-90 DEG		ISOLATION		
4	-3dB<-90 DEG	-3dB<0 DEG	ISOLATION			

Yantel Corporation

HC1650D03 Preliminary Datasheet

Hybrid Coupler 3 dB, 90°

Rev A1.0

Definition of Measured Specifications

Parameter	Definition	Mathematical Representation
VSWR (Voltage Standing Wave Ratio)	The impedance match of the coupler to a 50Ω system. A VSWR of 1:1 is optimal.	$VSWR = \frac{V_{max}}{V_{min}}$ Vmax = voltage maxima of a standing wave Vmin = voltage minima of a standing wave
Return Loss	The impedance match of the coupler to a 50Ω system. Return Loss is an alternate means to express VSWR.	Return Loss (dB)= 20log $\frac{VSWR + 1}{VSWR - 1}$
Insertion Loss	The input power divided by the sum of the power at the two output ports.	Insertion Loss(dB)= 10log $\frac{P_{in}}{P_{cpl} + P_{transmission}}$
Isolation	The input power divided by the power at the isolated port.	Isolation(dB)= 10log $\frac{P_{in}}{P_{iso}}$
Phase Balance	The difference in phase angle between the two output ports.	Phase at coupled port – Phase at transmisson port
Amplitude Balance	The power at each output divided by the average power of the two outputs.	$10\log \frac{P_{cpl}}{\left(\frac{P_{cpl} + P_{transmission}}{2}\right)} \text{ or } 10\log \frac{P_{transmission}}{\left(\frac{P_{cpl} + P_{transmission}}{2}\right)}$

Test Method

- 1. Calibrating your vector network analyzer.
- 2. Connect the VNA 4 Port to DUT respectively.
- 3. Measure the data of coupling through port 1 to port 4(S41).
- 4. Measure the data of transmission through port 1 to port 3(S31).
- 5. Measure the data of isolation through port 1 to port 2(S21).
- 6. Measure the data of phase port 4 & port 3(port 1 feeding).
- 7. Measure the data of return loss port 1, port 2, port 3 & port 4.
- 8. According to the above data to calculate insertion loss, amplitude balance & phase.

Note:

1. When calculating insertion loss at room temperature,

demo board loss should be removed from both coupling & transmission data. Please refer to the below table for demo board loss :

Frequency Range(MHz)	Demo Board Loss (dB) @25℃
470-860	0.07
800-1000	0.10
1200-1700	0.15
1700-2000	0.15
2000-2300	0.20
2300-2700	0.25

Yantel Corporation

Rev A1.0

Recommended PCB Layout

Reflow Profile

Yantel Corporation

Rev A1.0

Reliability Test Flow

Yantel Corporation

Rev A1.0

Reliability Test Flow

Yantel Corporation